loss of tail rotor effectiveness

Suppose you want to know about the Loss Of Tail Rotor Effectiveness, then this article is what you need. It contains how to avoid loss of tail rotor effectiveness. Also, it includes the use of tail rotor in helicopter.

Loss of Tail Rotor Effectiveness (LTE) is a critical, low-speed aerodynamic flight characteristic which can result in an uncommanded rapid yaw rate which does not subside of its own accord and, if not corrected, can result in the loss of aircraft control.

Loss Of Tail Rotor Effectiveness

how to avoid loss of tail rotor effectiveness

LTE is not related to a maintenance malfunction and may occur in varying degrees in all single main rotor helicopters at airspeeds less than 30 knots. LTE is not necessarily the result of a control margin deficiency.

The anti-torque control margin established during Federal Aviation Administration (FAA) testing is accurate and has been determined to adequately provide for the approved sideward/ rearward flight velocities plus counteraction of gusts of reasonable magnitudes. This testing is predicated on the assumption that the pilot is knowledgeable of the critical wind azimuth for the helicopter operated and maintains control of the helicopter by not allowing excessive yaw rates to develop.

LTE has been identified as a contributing factor in several helicopter accidents involving loss of control. Flight operations at low altitude and low airspeed in which the pilot is distracted from the dynamic conditions affecting control of the helicopter are particularly susceptible to this phenomena.

The following are three examples of this type of accident: A helicopter collided with the ground following a loss of control during a landing approach. The pilot reported that he was on approach to a ridge line landing zone when, at 70 feet above ground level (AGL) and at an airspeed of 20 knots, a gust of wind induced loss of directional control. The helicopter began to rotate rapidly to the right about the mast. The pilot was unable to regain directional control before ground contact. A helicopter impacted the top of Pike’s Peak at 14,100 feet mean sea level (MSL). The pilot said he had made a low pass over the summit into a 40-knot headwind before losing tail rotor effectiveness. He then lost directional control and struck the ground. A helicopter entered an uncommanded right turn and collided with the ground. The pilot was maneuvering at approximately 300 feet AGL when the aircraft entered an uncommanded right turn. Unable to regain control, he closed the throttle and attempted an emergency landing into a city park.

Understanding LTE Phenomena

To understand LTE, the pilot must first understand the function of the anti-torque system.

On U.S. manufactured single rotor helicopters, the main rotor rotates counterclockwise as viewed from above. The torque produced by the main rotor causes the fuselage of the aircraft to rotate in the opposite direction (nose right). The anti-torque system provides thrust which counteracts this torque and provides directional control while hovering.

On some European and Russian manufactured helicopters, the main rotor rotates clockwise as viewed from above. In this case, the torque produced by the main rotor causes the fuselage of the aircraft to rotate in the opposite direction (nose left). The tail rotor thrust counteracts this torque and provides directional control while hovering. (NOTE: We will focus on U.S. manufactured helicopters.)

Tail rotor thrust is the result of the application of anti-torque pedal by the pilot. If the tail rotor generates more thrust than is required to counter the main rotor torque, the helicopter will yaw or turn to the left about the vertical axis. If less tail rotor thrust is generated, the helicopter will yaw or turn to the right. By varying the thrust generated by the tail rotor, the pilot controls the heading when hovering.

In a no-wind condition, for a given main rotor torque setting, there is an exact amount of tail rotor thrust required to prevent the helicopter from yawing either left or right. This is known as tail rotor trim thrust. In order to maintain a constant heading while hovering, the pilot should maintain tail rotor thrust equal to trim thrust.

The environment in which helicopters fly, however, is not controlled. Helicopters are subjected to constantly changing wind direction and velocity. The required tail rotor thrust in actual flight is modified by the effects of the wind. If an uncommanded right yaw occurs in flight, it may be because the wind reduced the tail rotor effective thrust.

The wind can also add to the anti-torque system thrust. In this case, the helicopter will react with an uncommanded. left yaw. The wind can and will cause anti-torque system thrust variations to occur. Certain relative wind directions are more likely to cause tail rotor thrust variations than others. These relative wind directions or regions form an LTE conducive environment.

Conditions Under Which LTE May Occur

Any maneuver which requires the pilot to operate in a high-power, low-airspeed environment with a left crosswind or tailwind creates an environment where unanticipated right yaw may occur.

There is greater susceptibility for LTE in Right Turns. This is especially true during flight at low airspeed, since the pilot may not be able to stop rotation. The helicopter will attempt to yaw to the right. Correct and timely pilot response to an uncommanded right yaw is critical. The yaw is usually correctable if additional left pedal is applied immediately. If the response is incorrect or slow, the yaw rate may rapidly increase to a point where recovery is not possible.

Computer simulation has shown that if the pilot delays in reversing the pedal control position when proceeding from a left crosswind situation (where a lot of right pedal is required due to the sideslip) to downwind, control would be lost, and the aircraft would rotate more than 360° before stopping.

The pilot must anticipate these variations, concentrate on flying the aircraft, and not allow a yaw rate to build. Caution should be exercised when executing right turns under conditions conducive to LTE.

Flight Characteristics of LTE

Extensive flight and wind tunnel tests have been conducted by aircraft manufacturers. These tests have identified four relative wind azimuth regions and resultant aircraft characteristics that can, either singularly or in combination, create an LTE conducive environment capable of adversely affecting aircraft controllability. One direct result of these tests is that flight operations in the low speed flight regime dramatically increase the pilot’s workload.

Although specific wind azimuths are identified for each region, the pilot should be aware that the azimuths shift depending on the ambient conditions. The regions do overlap. The most pronounced thrust variations occur in these overlapping areas.

These characteristics are present only at airspeeds less than 30 knots and apply to all single rotor helicopters.
Flight test data has verified that the tail rotor does not stall during this period.

The aircraft characteristics and relative wind azimuth regions are:

Main Rotor Disc Vortex Interference (285° to 315°):

Winds at velocities of about 10 to 30 knots from the left front will cause the main rotor vortex to be blown into the tail rotor by the relative wind. The effect of this main rotor disc vortex is to cause the tail rotor to operate in an extremely turbulent environment.During a right turn, the tail rotor will experience a reduction of thrust as it comes into the area of the main rotor disc vortex. The reduction in tail rotor thrust comes from the air flow changes experienced at the tail rotor as the main rotor disc vortex moves across the tail rotor disc. The effect of this main rotor disc vortex is to increase the angle of attack of the tail rotor blades (increase thrust).The increase in the angle of attack requires the pilot to add right pedal (reduce thrust) to maintain the same rate of turn.As the main rotor vortex passes the tail rotor, the tail rotor angle of attack is reduced. The reduction in the angle of attack causes a reduction in thrust and a right yaw acceleration begins. This acceleration can be surprising, since the pilot was previously adding right pedal to maintain the right turn rate.This thrust reduction will occur suddenly and, if uncorrected, will develop into an uncontrollable rapid rotation about the mast. When operating within this region, the pilot must be aware that the reduction in tail rotor thrust can happen quite suddenly and the pilot must be prepared to react quickly and counter that reduction with additional left pedal input.

Weathercock stability (120° to 240°):

Tailwinds from 120° to 240°, like left crosswinds, will cause a high pilot workload. The most significant characteristic of tailwinds is that they are a yaw rate accelerator. Winds within this region will attempt to weathervane the nose of the aircraft into the relative wind. This characteristic comes from the fuselage and vertical fin.The helicopter will make a slow uncommanded turn either to the right or left depending upon the exact wind direction unless a resisting pedal input is made. If a yaw rate has been established in either direction, it will be accelerated in the same direction when the relative winds enter the 120° to 240° area unless corrective pedal action is made.If the pilot allows a right yaw rate to develop and the tail of the helicopter moves into this region, the yaw rate can accelerate rapidly. It is imperative that the pilot maintain positive control of the yaw rate and devote full attention to flying the aircraft when operating in a downwind condition.The helicopter can be operated safely in the above relative wind regions if proper attention is given to maintaining control. If the pilot is inattentive for some reason and a right yaw rate is initiated in one of the above relative wind regions, the yaw rate may increase.

use of tail rotor in helicopter

Top 10 Luxury Helicopters in the World

Most people have heard of personal and charter jets, but luxury helicopters are the genuine gems. Not only are these aircraft comparatively less expensive, but helicopters can approach places that bulky jets can’t. Having a private or commercial helicopter is expedient, more environment friendly, and a symbol of status. Celebrities including Brad Pitt and Angelina Jolie and Donald Trump own a luxury helicopter, and this slot market has grown considerably in recent years due to demand from the rich.

They are well-appointed with all the newest technology, and interior seating marks that are designed in fine Italian leather upholstery.

Therefore the list of top 10 luxury helicopters is given below:

1. Augusta Westland AW119 Ke Koala:

luxury helicopters

The Koala is chiefly used by law enforcement, but it can easily provide accommodation to a group of corporate directors traveling on business. It has a VIP services quite adequately, with premium leather upholstery and seating for about 6 passengers and 2 operators. The Koala reaches a top speed of 166 mph (267 km/h) and a range of 618 miles (995 km). Price ranges from $1.8 to $3 million.

2. Eurocopter Hermès EC 135:

luxury helicopters

Though this brand of luxury helicopters is not suitable for long distant trips, is has a class apart built. The typical EC 135 will cost you a mere $4.2 million, but the one with the interior design from the best in class designer will cost you up to $6 million. The top speed is 178 mph, but the range is just 395 miles.

3. Augusta Westland AW109 Grand Versace VIP:

luxury helicopters

Augusta Westland teamed up with the Italian fashion house Versace to produce a super luxury interior for this fancier version of the AW109. The top speed is about 177 mph and a range of 599 miles. The mere difference is that all 599 of those miles will be more luxurious for the VIP passengers. Hence, will cost you $6.3 million price tag and the helicopter is fully covered in Versace leather, design and exterior.

4. Eurocopter Mercedes-Benz EC 145:

luxury helicopters

If you’re a Mercedes fan, now you can fly your preferred brand helicopter too. A regular EC 145 costs about $5.5 million, so the Mercedes version is going to cost anywhere around $7 million. But it’s totally worth it. No other Mercedes can go 153 mph while flying 17,000 feet above the ground. It has all the luxury of the famous German sports.

5. Eurocopter EC 175:

luxury helicopters

The EC 175 made its wonderful first appearance at the Paris Air Show in 2009. The chief feature of the EC 175 is that it can hold 16 passengers contentedly inside. The top speed reaches 178 mph (286 km/h), with a range of 345 miles (555 km). It costs whooping $7.9 million.

6. Eurocopter EC 155:

luxury helicopters

This is a luxurious chopper. Its top speed is an impressive 200 mph with a range of 533 miles. It can seat as many as 13 passengers; this spacious EC 155 aircraft will cost you $10 million.

7. Sikorsky S-76C:

luxury helicopters

The Sikorsky S-76C is more generally known as Black Hawk. The massive interior is large sufficient to fit up to a dozen passengers, but the seating occupies 4 passengers in Black Hawk model. It reaches a top speed of 178 mph (286 km/h) and has a range of 473 miles (761 km). It would cost you a $12.95 million.

8. Augusta Westland AW139:

luxury helicopters

The AW139 is appropriate for law enforcement, armed patrol and firefighters. It has a capacity to seat 8 passengers. The AW139 can reach an unbelievable top speed of 193 mph (310 km/h), with a range of 573 miles (922 km). It carries a beautiful interior costing you a hefty $14.5 million.

9. Bell 525 Relentless:

luxury helicopters

Like the Gulfstream 650 jet, the Bell 525 Relentless helicopter isn’t on the market currently. This chopper is going to cost $15 million. They predicted that the seating will be for 16, a top speed of 162 mph, and a range of 460 miles. This bright yellow Relentless with amazing seating will cost you a fortune.

10. Sikorsky S-92 VIP Configuration:

luxury helicopters

The S-92 can safely accommodate 9 passengers in its extensive interior cabin. The prices vary exponentially if you plan on decking the interiors with gold or crystal. The top speed of the S-92 is around 194 mph (312 km/h), with a range of 594 miles (956 km). The prices range from $17 million to $32 million.
Helicopter charter can be the most stress-free travel familiarity you will ever have. Which includes being able to travel outside of airports to reach vital meetings or even other flights in a different airport. Though rich class can afford these luxury helicopters, they are worth the investment.

Leave a Comment