rc helicopter long flight time

If you are looking for the Rc Helicopter Long Flight Time, then you are on the right page. It contains extra large rc helicopters for sale. Suppose you want giant rc helicopter for sale instead. Then this article is what you need.

Small electric RC helicopters and multirotors are known for their very short flight times. Even after considerable effort the current record holders (as of Jan 2015) for longest flight time that I can find for an electric helicopter is just under 3 hours (link to owners website) while less than 1 hour 40 minutes (unofficial) for a quadcopter. I have since been made aware (thanks cloidnerux) of a longer flight time of a quad of over 2 hours!

extra large rc helicopters for sale

Rc Helicopter Long Flight Time

Although these are amazing flight times when you consider their size they are still very short when compared to full sized aircraft. In this post I explore why multirotors, quadcopters in specific, have these short flight times and see where improvements can be made.

How real aircraft do it.

Keeping a rotary-wing aircraft in the air for a long period is relatively straight forward and its something we have known how to do for decades. It is a case of:

  • Build the largest rotary-wing aircraft practically possible with today’s materials and optimise it for your flight conditions. Bigger is better from the Reynolds number perspective, but due to a finite specific modulus of todays composite materials and the square-cube law  there will be an optimum size. In other words, a bigger rotor is more efficient but make things too big and it will either be too heavy or break.
  • Reduce weight as much as practically possible. This includes removing the heavy human component, reduce payload etc.
  • Equip your rotary-wing aircraft with the highest efficiency and highest energy density drivetrain possible.  Efficiency and energy density tend to be mutually exclusive, so a compromise between the two will always be needed.
  • Use the highest energy density fuel practically possible. A nuclear powered helicopter will have a great endurance, but more realistically a high energy density liquid fuel.

When you put these components together you can end up with the 20+ hours flight time seen for the A160 Hummingbird UAV, even with a moderate payload, and I would not be surprised if much longer loiter times have been achieved and not published for obvious reasons.

So what happens when you try to apply these principles to small electric RC helicopters and multirotors?

Endurance and electric RC multirotors: Size matters.

First the good news: The energy density and efficiency of electric motors is generally far greater than a comparable internal combustion engine. Furthermore, the smaller size scales of RC models means you need very little structural material to achieve the required rigidity.

The bad news: Size matters. A lot. As you reduce the size of a rotor down to that of an RC helicopter or worse, a quadcopter, the rotors lift to drag ratio increases dramatically which in turn lowers overall efficiency. The properties of the air itself does not change for smaller rotors, but rather the way the rotor interacts with the air. Viscous forces come to dominate at high speeds and small rotor length scales meaning that smaller rotors are simply less efficient. Unfortunately, this is an unavoidable side effect of small rotors and is one of the reasons we don’t already have jet packs and flying cars. This is also why the record flight duration for an RC helicopters is nearly double that of an equivalent quadcopter, they simply have bigger rotors that are more efficient due to their size. If it was not for the simplicity of quadcopters over helicopters (think swashplate), they may have never become as popular as they are today.

Another more obvious factor is that batteries are also not as energy dense as liquid fuels. Lithium-polymer batteries have an energy density typically around 150 Wh/kg (higher if you sacrifice C rating) and even the 18650 Lithium Ion cells used by the record holders above are only in the 250 Wh/kg region. In comparison, petrol has an equivalent energy density of over 12,500 Wh/kg and when you consider that around two thirds of that energy is lost as heat in an internal combustion engine this still gives an energy density 16 times that of the best batteries available.

These two factors are the key reason why micro sized (palm of your hand) quadcopters can barely achieve 5 minutes flight time.

How to improve efficiency for longer quadcopter flight times.

So how can we improve on the current endurance record for an electric multirotor such as a quadcopter. The quadcopter mentioned above is already doing all the right things by having minimal weight, large rotors running on efficient motors at low rpm, the highest energy density batteries available and minimal obstructions to the air stream.  So where to from there?

Make it bigger. The most obvious answer by now is perhaps to simply make it bigger. Bigger rotors equal less drag for a given thrust and so longer flight times. However, before you start building a house size quadcopter note that there are a few problems with this idea. Things get very expensive very quickly, the rotors become much more dangerous to be around and worst of all the angular momentum of the rotor can become so large that the rapid rpm changes needed to maintain the stability of a quadcopter become difficult or even impossible. One solution to the latter problem is to add a collective pitch setup like a helicopter, but then aside from the maneuverability benefits you may as well use a standard helicopter platform which will be lighter and more efficient anyway. So supposing we want to keep the footprint (rotorprint?) of the quadcopter fixed to around the same size as that shown above then what other options are there? Some possibilities are as follows:

  • Adding more rotors. This simply will not help. The rotors would need to be smaller to fit in the same given area and so will actually lead to worse flight times due to the increased drag mentioned above. The only reason to add more props is when size is not restricted so as to increase lift without encountering the aforementioned safety and stability problems. Hence why the first commercial manned multi rotor looks the way it does.
  • Adding more batteries. This also won’t help if the lift to weight ratio is already optimised for the quadcopter size.
  • Reducing frame weight. The current record holder is already using a simple carbon fiber frame that would be difficult to improve on.
  • Custom ESC or Motors. By using high saturation magnetisation permanent magnets, lower core loss soft magnetic materials and higher quality electrical components it would be possible to improve efficiency. However the reward for such dedication will likely only be minor.
  • Invert the motors. One suggestion is to invert the motors to push rather than pull. It is suggested here that this will reduce prop wash and so improve lift efficiency, leading to slightly longer flight times. Definitely worth considering and is currently used by some commercial UAV such as the Aeryon SkyRange shown below.

  • Addition of ducts around the rotor.Although there is a lot debate on RC forums, many scientific studies have shown conclusively that the addition of a duct (also called a shroud depending on how you define it) around rotors, big or small, does increase thrust, and by a considerable amount too.

The most useful source of information on this topic I have found to be by Jason L. Pereira, which can be found here, and I have used this as my source of information for the following discussion.

In short, compared to an open rotor, an optimally designed ducted rotor of the same size can expect a reduction in power consumption in the order of 60%Needless to say, thats quite a lot even after considering a weight penalty for the ducts themselves. This reduction in power consumption is due to a few factors that we will be elaborated on shortly. What’s more, thrust can be increase by nearly 100% if you keep the power consumption at the same level as an unducted rotor. I believe the reason for the debate on this topic on RC forums is that people who try this at home nearly always use commercially available electric ducted fans (EDF) as seen in these many videos. These fans, which are designed for fast level flight and not static hovering, are not the right tool for the job. They normally have a much smaller propeller diameter than an equivalent quadcopter rotor and a duct shape that adds little additional thrust for hovering. An example is shown below:

A more efficient duct shape is shown by the slightly exaggerated profile below. Notice the large slope on the inlet lip and the expansion of the duct cross section downstream of the rotor.

There are three main ways in which a duct is able to improve thrust:

  1. Additional lift is created by air being drawn over the lip of the inlet, creating a upward suction suction force.
  2. Tip vortices of the rotor are reduced dramatically by the close proximity of the duct wall to the rotor tips.
  3. The diffuser section of the duct prevents the narrowing, and can even expand, the exhaust flow of air, increasing thrust.

If you are interested in designing your own duct I suggest you read the source mentioned earlier. I believe that if well designed and reasonably light weight ducts can be added to a quadcopter it should dramatically improve flight time. However, please keep in mind that ducted rotors will degrade horizontal flight performance and make the quadcopter more susceptible to high winds due to the larger cross sectional area. As a result, FPV racers need not apply and instead its use may be limited to the many applications where flight duration or carrying capacity are of most importance.

  • Addition of contra-rotating rotors. When properly designed, two oppositely spinning rotors placed on the same axis has been shown to improve flight efficiency between 6 and 16%. My reading suggests that for optimal efficiency the pitch of the downstream rotor needs to be higher and varied along its length compared to the upstream rotor for unducted setups.

However, apparently for a for ducted contra rotating rotors the pitch requirements of the secondary rotor become far simpler and so off-the-shelf rotors may be all that is required to get a good effect. So when used in conjunction with ducted fans perhaps even greater endurance could be reached while maintaining the same footprint.

Thinking outside the box.

A more radical suggestion for increasing flight duration is to try to combine the large rotor area, and thus lower relative drag, of a traditional helicopter with the simplicity (no swashplate) of a quadcopter. But how to achieve this?

One possibility would involve a large singular centrally located ducted rotor to provide lift and then four smaller rotors on the exterior for stability. So long as the smaller motors are only used for pitch, roll  and yaw control this will lead to an improvement in overall efficiency with a small weight penalty. Stators (non-rotating fins) can be used to prevent rotor swirl causing yaw or, alternatively, the more efficient contra-rotating setup can be added.

In fact such a multi rotor craft already exists, and its aim at the military. See Reference Tech’s Hummingbird series.

An in depth video on the older hummingbird 1 can be found here. Running on batteries, the hummingbird 1 has a claimed dwell time of over 2 hours and is not much bigger than a conventional quadcopter. So not only is it possible to break the 2 hour mark, its already been done. What’s more, the petrol model has a stated incredible 5 hours dwell time and is used as a hybrid configuration where the ICE is only used to produced electricity. The model shown above uses 6 exterior rotors but I see no reason why four would not work equally as well. Perhaps the 6 rotors was decided on for redundancy reasons for military use.

giant rc helicopter for sale

Top 10 Luxury Helicopters in the World

Most people have heard of personal and charter jets, but luxury helicopters are the genuine gems. Not only are these aircraft comparatively less expensive, but helicopters can approach places that bulky jets can’t. Having a private or commercial helicopter is expedient, more environment friendly, and a symbol of status. Celebrities including Brad Pitt and Angelina Jolie and Donald Trump own a luxury helicopter, and this slot market has grown considerably in recent years due to demand from the rich.

They are well-appointed with all the newest technology, and interior seating marks that are designed in fine Italian leather upholstery.

Therefore the list of top 10 luxury helicopters is given below:

1. Augusta Westland AW119 Ke Koala:

luxury helicopters

The Koala is chiefly used by law enforcement, but it can easily provide accommodation to a group of corporate directors traveling on business. It has a VIP services quite adequately, with premium leather upholstery and seating for about 6 passengers and 2 operators. The Koala reaches a top speed of 166 mph (267 km/h) and a range of 618 miles (995 km). Price ranges from $1.8 to $3 million.

2. Eurocopter Hermès EC 135:

luxury helicopters

Though this brand of luxury helicopters is not suitable for long distant trips, is has a class apart built. The typical EC 135 will cost you a mere $4.2 million, but the one with the interior design from the best in class designer will cost you up to $6 million. The top speed is 178 mph, but the range is just 395 miles.

3. Augusta Westland AW109 Grand Versace VIP:

luxury helicopters

Augusta Westland teamed up with the Italian fashion house Versace to produce a super luxury interior for this fancier version of the AW109. The top speed is about 177 mph and a range of 599 miles. The mere difference is that all 599 of those miles will be more luxurious for the VIP passengers. Hence, will cost you $6.3 million price tag and the helicopter is fully covered in Versace leather, design and exterior.

4. Eurocopter Mercedes-Benz EC 145:

luxury helicopters

If you’re a Mercedes fan, now you can fly your preferred brand helicopter too. A regular EC 145 costs about $5.5 million, so the Mercedes version is going to cost anywhere around $7 million. But it’s totally worth it. No other Mercedes can go 153 mph while flying 17,000 feet above the ground. It has all the luxury of the famous German sports.

5. Eurocopter EC 175:

luxury helicopters

The EC 175 made its wonderful first appearance at the Paris Air Show in 2009. The chief feature of the EC 175 is that it can hold 16 passengers contentedly inside. The top speed reaches 178 mph (286 km/h), with a range of 345 miles (555 km). It costs whooping $7.9 million.

6. Eurocopter EC 155:

luxury helicopters

This is a luxurious chopper. Its top speed is an impressive 200 mph with a range of 533 miles. It can seat as many as 13 passengers; this spacious EC 155 aircraft will cost you $10 million.

7. Sikorsky S-76C:

luxury helicopters

The Sikorsky S-76C is more generally known as Black Hawk. The massive interior is large sufficient to fit up to a dozen passengers, but the seating occupies 4 passengers in Black Hawk model. It reaches a top speed of 178 mph (286 km/h) and has a range of 473 miles (761 km). It would cost you a $12.95 million.

8. Augusta Westland AW139:

luxury helicopters

The AW139 is appropriate for law enforcement, armed patrol and firefighters. It has a capacity to seat 8 passengers. The AW139 can reach an unbelievable top speed of 193 mph (310 km/h), with a range of 573 miles (922 km). It carries a beautiful interior costing you a hefty $14.5 million.

9. Bell 525 Relentless:

luxury helicopters

Like the Gulfstream 650 jet, the Bell 525 Relentless helicopter isn’t on the market currently. This chopper is going to cost $15 million. They predicted that the seating will be for 16, a top speed of 162 mph, and a range of 460 miles. This bright yellow Relentless with amazing seating will cost you a fortune.

10. Sikorsky S-92 VIP Configuration:

luxury helicopters

The S-92 can safely accommodate 9 passengers in its extensive interior cabin. The prices vary exponentially if you plan on decking the interiors with gold or crystal. The top speed of the S-92 is around 194 mph (312 km/h), with a range of 594 miles (956 km). The prices range from $17 million to $32 million.
Helicopter charter can be the most stress-free travel familiarity you will ever have. Which includes being able to travel outside of airports to reach vital meetings or even other flights in a different airport. Though rich class can afford these luxury helicopters, they are worth the investment.

Leave a Comment