Small water wheel generator

Our team has researched and reviewed the Small Water Wheel Generator to help you come up with a better decision. We’ve also put up a shopping guide with the features you can consider when buying the water wheel generator kit for sale.

Hydro Energy is the technology that converts the energy of moving water into mechanical or electrical energy, and one of the earliest devices used to convert the energy of moving water into usable work was the Waterwheel. Water wheel design has evolved over time with some water wheels oriented vertically, some horizontally and some with elaborate pulleys and gears attached, but they are all designed to do the same function and that is too, “convert the linear motion of the moving water into a rotary motion which can be used to drive any piece of machinery connected to it via a rotating shaft”.

water wheel generator kit

Waterwheel Design for Micro Hydro Energy

waterwheel design

Typical Waterwheel Design

Early Waterwheel Design were quite primitive and simple machines consisting of a vertical wooden wheel with wooden blades or buckets fixed equally around their circumference all supported on a horizontal shaft with the force of the water flowing underneath it pushing the wheel in a tangential direction against the blades.

These vertical waterwheels were vastly superior to the earlier horizontal waterwheel design by the ancient Greeks and Egyptians, because they could operate more efficiently translating the momentum of the moving water into power. Pulleys and gearing was then attached to the waterwheel which allowed a change in direction of a rotating shaft from horizontal to vertical in order to operate millstones, saw wood, crush ore, stamping and cutting etc.

small water wheel generator

Most Waterwheels also known as Watermills or simply Water Wheels, are vertically mounted wheels rotating about a horizontal axle, and these types of waterwheels are classified by the way in which the water is applied to the wheel, relative to the wheel’s axle. As you may expect, waterwheels are relatively large machines which rotate at low angular speeds, and have a low efficiency, due to losses by friction and the incomplete filling of the buckets, etc.

The action of the water pushing against the wheels buckets or paddles develops torque on the axle but by directing the water at these paddles and buckets from different positions on the wheel the speed of rotation and its efficiency can be improved. The two most common types of waterwheel design is the “undershot waterwheel” and the “overshot waterwheel”.

The Undershot Waterwheel

Undershot Water Wheel Design

undershot waterwheel design

The Undershot Water Wheel Design, also known as a “stream wheel” was the most commonly used type of waterwheel designed by the ancient Greeks and Romans as it is the simplest, cheapest and easiest type of wheel to construct.

In this type of waterwheel design, the wheel is simply placed directly into a fast flowing river and supported from above. The motion of the water below creates a pushing action against the submerged paddles on the lower part of the wheel allowing it to rotate in one direction only relative to the direction of the flow of the water.

This type of waterwheel design is generally used in flat areas with no natural slope of the land or where the flow of water is sufficiently fast moving. Compared with the other waterwheel designs, this type of design is very inefficient, with as little as 20% of the waters potential energy being used to actually rotate the wheel. Also the waters energy is used only once to rotate the wheel, after which it flows away with the rest of the water.

Another disadvantage of the undershot water wheel is that it requires large quantities of water moving at speed. Therefore, undershot waterwheels are usually situated on the banks of rivers as smaller streams or brooks do not have enough potential energy in the moving water.

One way of improving the efficiency slightly of an undershot waterwheel is to divert a percentage off the water in the river along a narrow channel or duct so that 100% of the diverted water is used to rotate the wheel. In order to achieve this the undershot wheel has to be narrow and fit very accurately within the channel to prevent the water from escaping around the sides or by increasing either the number or size of the paddles.

The Overshot Waterwheel

Overshot Water Wheel Design

overshot waterwheel design

The Overshot Water Wheel Design is the most common type of waterwheel design. The overshot waterwheel is more complicated in its construction and design than the previous undershot waterwheel as it uses buckets or small compartments to both catch and hold the water.

These buckets fill with water flowing in at the top of the wheel. The gravitational weight of the water in the full buckets causes the wheel to rotate around its central axis as the empty buckets on the other side of the wheel become lighter.

This type of water wheel uses gravity to improve output as well as the water itself, thus overshot waterwheels are much more efficient than undershot designs as almost all of the water and its weight is being used to produce output power. However as before, the waters energy is used only once to rotate the wheel, after which it flows away with the rest of the water.

Overshot waterwheels are suspended above a river or stream and are generally built on the sides of hills providing a water supply from above with a low head (the vertical distance between the water at the top and the river or stream below) of between 5-to-20 metres. A small dam or weir can be constructed and used to both channel and increase the speed of the water to the top of the wheel giving it more energy but it is the volume of water rather than its speed which helps rotate the wheel.

Generally, overshot waterwheels are built as large as possible to give the greatest possible head distance for the gravitational weight of the water to rotate the wheel. However, large diameter waterwheels are more complicated and expensive to construct due to the weight of the wheel and water.

When the individual buckets are filled with water, the gravitational weight of the water causes the wheel to rotate in the direction of the flow of water. As the angle of rotation gets nearer to the bottom of the wheel, the water inside the bucket empties out into the river or stream below, but the weight of the buckets rotating behind it causes the wheel to continue with its rotational speed. The empty bucket continues around the rotating wheel until it gets back up to the top again ready to be filled with more water and the cycle repeats. One of the disadvantages of an overshot waterwheel design is that the water is only used once as it flows over the wheel.

The Pitchback Waterwheel

Pitchback Water Wheel Design

pitchback waterwheel design

The Pitchback Water Wheel Design is a variation on the previous overshot waterwheel as it also uses the gravitational weight of the water to help rotate the wheel, but it also uses the flow of the waste water below it to give an extra push. This type of waterwheel design uses a low head infeed system which provides the water near to the top of the wheel from a pentrough above.

Unlike the overshot waterwheel which channelled the water directly over the wheel causing it to rotate in the direction of the flow of the water, the pitchback waterwheel feeds the water vertically downwards through a funnel and into the bucket below causing the wheel to rotate in the opposite direction to the flow of the water above.

Just like the previous overshot waterwheel, the gravitational weight of the water in the buckets causes the wheel to rotate but in an anti-clockwise direction. As the angle of rotation nears the bottom of the wheel, the water trapped inside the buckets empties out below. As the empty bucket is attached to the wheel, it continues rotating with the wheel as before until it gets back up to the top again ready to be filled with more water and the cycle repeats.

The difference this time is that the waste water emptied out of the rotating bucket flows away in the direction of the rotating wheel (as it has nowhere else to go), similar to the undershot waterwheel principal. Thus the main advantage of the pitchback waterwheel is that it uses the energy of the water twice, once from above and once from below to rotate the wheel around its central axis.

The result is that the efficiency of the waterwheel design is greatly increased to over 80% of the waters energy as it is driven by both the gravitaional weight of the incoming water and by the force or pressure of water directed into the buckets from above, as well as the flow of the waste water below pushing against the buckets. The disadvantage though of an pitchback waterwheel is that it needs a slightly more complex water supply arrangement directly above the wheel with chutes and pentroughs.

The Breastshot Waterwheel

Breastshot Water Wheel Design

breastshot waterwheel design

The Breastshot Water Wheel Design is another vertically-mounted waterwheel design where the water enters the buckets about half way up at axle height, or just above it, and then flows out at the bottom in the direction of the wheels rotation. Generally, the breastshot waterwheel is used in situations were the head of water is insufficient to power an overshot or pitchback waterwheel design from above.

The disadvantage here is that the gravitational weight of the water is only used for about one quarter of the rotation unlike previously which was for half the rotation. To overcome this low head height, the waterwheels buckets are made wider to extract the required amount of potential energy from the water.

Breastshot waterwheels use about the same gravitational weight of the water to rotate the wheel but as the head height of the water is around half that of a typical overshot waterwheel, the buckets are a lot wider than previous waterwheel designs to increase the volume of the water caught in the buckets. The disadvantage of this type of design is an increase in the width and weight of the water being carried by each bucket. As with the pitchback design, the breastshot wheel uses the energy of the water twice as the waterwheel is designed to sit in the water allowing the waste water to help in the rotation of the wheel as it flows away down stream.

Generate Electricity using a Waterwheel

Historically water wheels have been used for milling flour, cereals and other such mechanical tasks. But water wheels can also be used for the generation of electricity, called a Hydro Power system. By connecting an electrical generator to the waterwheels rotating shaft, either directly or indirectly using drive belts and pulleys, waterwheels can be used to generate power continuously 24 hours a day unlike solar energy. If the waterwheel is designed correctly, a small or “micro” hydroelectric system can produce enough electricity to power lighting and/or electrical appliances in an average home.

Look for Water wheel Generators designed to produce its optimum output at relatively low speeds. For small projects, a small DC motor can be used as a low-speed generator or an automotive alternator but these are designed to work at much higher speeds so some form of gearing may be required. A wind turbine generator makes an ideal waterwheel generator as it is designed for low speed, high output operation.

If there is a fairly fast flowing river or stream near to your home or garden which you can use, then a small scale hydro power system may be a better alternative to other forms of renewable energy sources such as “Wind Energy” or “Solar Energy” as it has a lot less visual impact. Also just like wind and solar energy, with a grid-connected small scale waterwheel designed generating system connected to the local utility grid, any electricity you generate but don’t use can be sold back to the electricity company.

In the next tutorial about Hydro Energy, we will look at the different types of turbines available which we could attach to our waterwheel design for hydro power generation. For more information about Waterwheel Design and how to generate your own electricity using the power of water, or obtain more hydro energy information about the various waterwheel designs available, or to explore the advantages and disadvantages of hydro energy, then Click Here to order your copy from Amazon today about the principles and construction of waterwheels which can be used for generating electricity.

Domestic Wind Turbines – The Basics

Households can now make use of wind power technology by installing micro turbines, also known as or small-wind or ‘microwind’ turbines. When the wind is strong enough it turns the blades of the turbine, generating electricity. The U.K. climate is ideal for wind harnessing technologies as 40% of the wind in Europe is experienced here, and in the right area you should be able to see substantial savings on your electricity bills.

Pole mounted domestic wind turbine
Pole mounted domestic wind turbine

There are two types of microwind turbine:

  • Building mounted: These systems are installed on your roof, and have a fairly small capacity, averaging 1-2kW
  • Pole mounted: These installations are freestanding and have a larger capacity of around 5kW-6kW

The Energy Saving Trust has calculated that in an ideal location a roof mounted micro-turbine system could reduce your electricity bills by around £350 a year. Your system could also be eligible to receive payments for the electricity you generate through the government’s Feed-In Tariff (FIT) scheme. Here’s how the scheme works:

  • You are paid a ‘Generation Tariff’ for each unit of electricity you generate, regardless of whether you use it or not, at a tariff rate that is fixed when you make an application for the scheme. The scheme then pays you starting from when you apply to the scheme, for 20 years. A pole mounted installation in an ideal location could receive £2,700 a year at current tariff values.
  • You are also paid an ‘Export Tariff’ for any generated electricity that you don’t use. The same pole mounted installation could receive £160 a year in export payments at current tariff values.
  • The electricity that you generate is free for you to use. If you use more electricity than your system is generating at any point you will be taking it automatically from the grid as you do now, which you will pay for. Overall, however, you will still save money on your electricity bill.
  • You can get a loan to cover the cost of installing your system by instead signing up to the Green Deal scheme. The loan is recovered via your energy bill, using the money you have saved on your energy bill by using the system. This means that the installation should not cost you any additional money.

Calculate your savings now!

How Domestic Wind Turbines Work

How a domestic wind turbine feeds electricity to your home and to the national grid
How a domestic wind turbine feeds electricity to your home and to the national grid
  • When the wind turns a wind turbine’s blades this movement drives the rotating shaft the blades are attached to. This shaft sits inside a generator. Inside the generator the shaft is surrounded by a magnetic field, so that when the shaft rotates it generates an electric current. In smaller turbines the blades can be attached directly to a generator with a magnetic field.
  • The electricity the turbine produces is DC electricity. This DC electricity passes through a device called an inverter, which connects the turbine and your home’s electrical system. It converts the DC electricity to AC electricity which can be used in your home.
  • The electricity the wind turbine generates can be fed directly into your home or stored in batteries. The turbines can be connected to the national grid so that you can export any surplus electricity and receive FIT payments for your electricity, or you can keep your turbine off the grid and store your surplus using batteries, though this arrangement won’t qualify for FIT payments.
  • If your turbine is connected to the grid, any surplus electricity is automatically exported to the grid, and if you use electricity from the grid this is also supplied to your system automatically.

The providers of the FIT scheme do not currently measure how many units of electricity you export, but for microwind turbine systems it is assumed to be 75% of the electricity you generate. The capacity of a microwind turbine system to generate electricity varies according to the individual system, and can be described in kilowatts (kW). This value can range from approximately 0 to 15. The average capacity of a house mounted system is 1-2kW and the average capacity of a pole mounted system is 5-6kW.

Whilst this measure is valuable, it does not fully describe the capacity of a turbine as the wind speeds at which this capacity is reached differ from turbine to turbine. This means that the Small Wind Turbine Performance and Safety Standard is also used. Contained within this standard is the BWEA Reference Annual Energy. This is the energy in kWh that the turbine will produce annually at a consistent wind speed of 5m/s at a set turbine height. A second value, the BWEA Reference Sound Levels give the noise level of the turbine from 25 and 60m away rounded up to the nearest decibel (dB).

Installing Microwind Turbines

When considering a microwind turbine installation it is essential that you accurately measure the wind speed of your specific location. The average annual wind speed required to make wind turbines worth the investment is a minimum of 5 metres per second (11 mph), which is not usually achieved in urban or suburban areas. This is because the wind speed in urbanised areas is usually reduced by by closely arranged buildings and trees. Nearby hills can also affect wind speed, as does whether you live in a valley or not.

Building mounted domestic wind turbine
Building mounted domestic wind turbine

It is strongly recommended that before you commission a microwind installation that you accurately measure your local wind speed by buying and fitting an anemometer (wind measuring instrument). You should leave this device to carry out measurements for at least three months but ideally you should leave it for a year to get a comprehensive overview of the wind levels your property is exposed to.

Domestic Wind Turbine Installation Checklist

There are a few important things to consider:

  • Building mounted or pole mounted: Building mounted systems have a lower capacity than pole mounted systems, meaning that they will generate less electricity and are cheaper to install
  • Whether you want to connect to the grid: Currently you will need to connect to the grid toreceive FIT payments. Contact your local DNO (District Network Operator) to arrange connecting your turbine to the grid
  • Whether your local area is prone to power cuts: When the power in an area fails all inverters connected to the grid are switched off, meaning that your system will stop working. You can install batteries with your turbine to provide a back-up electricity store – ask your installer for more information
  • Roof integrity: If you are intending to install a building mounted turbine it’s wise to consult your installer on whether your house is durable enough to support the turbine – they can be heavy and vibrate when in use
  • Planning permission: There are currently permitted development rights granted for domestic wind turbine systems in England, which should mean that you won’t need planning permission for your installation. However, the criteria for this are complex and there are varying needs for planning permission across the rest of the U.K. It is therefore wise to check the planning permissions for your installation with your local authority well in advance. You will have to supply a number of documents as well as paying an application fee of £150. It is a good idea to meet with a local planning officer before submitting your application so you know exactly what is required, as is consulting with any third parties such as neighbours who may be affected by your installation. Some installers will provide information and support with filling out planning applications
  • Environmental permissions: If your planned turbine is over 15m tall or you are planning to install two turbines you may be required to commission a bat or bird survey of the area
  • Your energy supplier: The larger energy companies have a legal obligation to be registered FIT suppliers but for smaller companies this is optional. Check with your energy supplier to see what they provide regarding FIT
  • Are you carrying out other building projects? You might be able to reduce the size of your installation bill by carrying out the work at the same time as any other building or landscaping work you are planning

Installation Time

The time your system will take to install will vary with your specific circumstances, particularly if you decide to carry out the installation at the same time as other building work.

Domestic Wind Turbine Installers

If you intend to apply to the FIT payments scheme you will need to ensure that your installation is carried out by an MCS accredited installer using parts that meet MCS standards. When your installer signs off your installation as being MCS compliant they will give you an MCS certificate that you will need when applying for the scheme. If you are financing your installation through the Green Deal you will need to instead use an authorised Green Deal installer.

Domestic Wind Turbine Costs

A standard 1kW building mounted turbine installation costs around £2000, with a 2.5kW turbine costing around £15,000 and a 6kW around £23,000 including installation costs.

Pole mounted domestic wind turbine
Pole mounted domestic wind turbine

Typically larger systems cost more to install but can generate more electricity, delivering you bigger energy savings and larger tariff payments. An average system working in a 5 m/s wind speed location can save you around £350 on your electricity bill and pay you £160 in Export Tariff payments and £2,700 in Generation Tariff payments every year. You will be paid these tariffs from the date you register for FIT payments for 20 years.https://googleads.g.doubleclick.net/pagead/ads?guci=2.2.0.0.2.2.0.0&us_privacy=1YNY&client=ca-pub-4631420095579283&output=html&h=15&slotname=6409949898&adk=4019539845&adf=3200023268&pi=t.ma~as.6409949898&w=728&lmt=1613417609&psa=1&channel=7299622441&url=https%3A%2F%2Fwww.diydoctor.org.uk%2Fprojects%2Fdomestic-wind-turbines.htm&flash=0&wgl=1&adsid=ChEIgNSogQYQmNm9wobVvZ-bARI9AKu7heg3v5j3N9BJyyEnVgy7qVQqv3GsM3IXqw-voIe-wO8g9U3GSrqOOcNaKSwxlorfuTo3pgD4cZd80g&dt=1613417594434&bpp=44&bdt=12248&idt=4056&shv=r20210211&cbv=r20190131&ptt=9&saldr=aa&abxe=1&cookie=ID%3Da46e6f01d9595ffe%3AT%3D1613417484%3AS%3DALNI_MZx0AYA6PGD4Bl0OK6qByxEsO6UfA&prev_fmts=0x0&prev_slotnames=9837170960&nras=1&correlator=2580623100149&pv_ch=7299622441%2B&frm=20&pv=1&ga_vid=2092623908.1613417596&ga_sid=1613417597&ga_hid=750009863&ga_fc=0&u_tz=60&u_his=1&u_java=0&u_h=800&u_w=1280&u_ah=732&u_aw=1280&u_cd=24&u_nplug=3&u_nmime=4&adx=79&ady=8854&biw=1265&bih=721&scr_x=0&scr_y=6809&eid=42530672%2C44736376%2C44736623%2C21068769%2C21068893&oid=3&psts=AGkb-H-Z3G_7-hRljTRsPqeAkVM-d6Ue0DuLqcHyHLlVWqIU2LT2TaEvAg&pvsid=3042850121677307&pem=618&ref=https%3A%2F%2Fwww.google.com%2F&rx=0&eae=0&fc=896&brdim=0%2C0%2C0%2C0%2C1280%2C0%2C1280%2C800%2C1280%2C721&vis=1&rsz=%7C%7CeEbr%7C&abl=CS&pfx=0&fu=8192&bc=31&jar=2021-02-15-19&ifi=2&uci=a!2&btvi=1&fsb=1&xpc=ZReE55zIJo&p=https%3A//www.diydoctor.org.uk&dtd=14797

The system will run for at least 20 years, and as the tariff value is set at the start of payments and index linked it is likely that the system will pay for itself in 7 years or less. After this point you will be receiving savings on your electricity bills and payments for around 13 years. For more information on the FIT scheme you can visit our Feed-In Tariff (FIT) page.

If you cannot afford to pay for the installation yourself the Green Deal scheme provides long term finance to cover all or part of your costs. These costs are recovered through your electricity bills using the savings you have made by using the turbine. Because the payment value should not exceed your saving this should mean that the installation doesn’t cost you additional money over what you would usually spend on your electricity bill. The scheme does include 7% interest in the payments however, so you will make more of a saving overall if you can afford to pay for the installation upfront. To find out more about the Green Deal, visit our Green Deal page.

In terms of maintenance, your installer will be able to give you specific guidance on any maintenance checks that need to be carried out. Usually it is recommended that you get your system professionally checked yearly at a cost of £100-£200. The turbine system comes with a lifetime warranty but the inverter may need replacing during that time at a cost of £1,000-£2,000 for larger systems. Any batteries used with the system will usually have to be replaced every 6-10 years.Find an MCS accredited local installer

The Benefits of Domestic Wind Turbines

An average household installing a well-sited domestic wind turbine system could benefit by over £3,200 a year. This includes the money you could save on your electricity bill as well as the Generation Tariff and Export Tariff payments you could receive from the FIT scheme. Our Feed-In Tariff scheme page contains more information on this new initiative. Domestic wind turbines deliver additional benefits:

  • Reduce your carbon footprint: A 6kW pole-mounted wind turbine system can save around 5.2 tonnes of CO2 a year.
  • Pays for itself quickly: Larger systems have a payback time of around 7 years at current tariff rates, meaning that your system’s payback time could be similar or less.

Leave a Comment