solar charge controller price

Today, we review the Solar Charge Controller Price. RV solar systems are more than just panels on the roof. Any well designed RV solar system has a Charge Controller or Regulator as part of the system. It is the heart of the solar system. Without it, the batteries will not be properly charged and damage to the battery pack will occur. Or, at the very least, shorter battery life will result. One should NEVER EVER connect a solar panel directly to a battery pack without a controller….unless the solar panel is so small it is classified as a trickle charger.
Picking the right charge controller for your RV solar system is important. There are plenty of good products on the market today, and a few great ones. Charge controllers of average quality work well, are very reliable if installed correctly, and won’t break the bank. There are a few basic differences in technology that are important to consider before buying. With this knowledge, a well informed consumer can make the right choice easily.

solar controller

PWM RV Charge Controllers.


These controllers are designed to charge batteries at different voltages slowing plate sulphating, and extending battery life. These controllers are easy to identify. The features describe different charging modes such as bulk charge, absorption charge, float charge, and equalize. These controllers are usually low cost, come with a host of other features, and work well for most applications. They are the most commonly found controllers on the market today and cost anywhere from $50-$400 depending on the power rating and other features.

MPPT RV Charge Controllers.


The latest Charge Controller technology to be brought to the RV industry employs MPPT or Maximum Power Point Tracking. A charge controller with MPPT (a technology borrowed from the commercial and residential solar industry) will deliver 10%-30% more energy from the solar panels to the RV batteries than one without this feature. This is not because MPPT makes the controller more efficient, instead MPPT is just smarter. Every solar panel made has a different maximum power point. A point at which current (amperage) and voltage peak. An MPPT controller is designed to sense this point and adjust itself for maximum output. This point is referred to as the ‘knee of the curve’ and is shown on the IV graph found on almost every solar panel datasheet. MPPT controllers are more expensive than PWM types. A good MPPT charge controller can cost $250-$700 depending on the power rating. So, the added value of the energy produced, versus the added cost, must be considered. Depending on the size of the system, it could make as much difference as adding another panel. In some cases updating just the controller itself to MPPT is about the same cost as adding another solar panel to the system with the same benefit and cost. Something to consider for those with older controllers.

Amperage.


All Solar Charge Controllers have a power rating. This is usually measured in AMPS. It is the maximum amount of electrical current the controller can handle without failing. A label is found on the back of every solar panel will detail the maximum amount of amps the panel will output. This is usually expressed as ISC or short circuit current. Since most RV solar panels are wired in parallel, the amperage from every panel is added together. The total solar panel current or battery current should not exceed the maximum power rating of the charge controller. It is a good system design practice to oversize the controller by 20%. The controller will run cooler, be more reliable, and last longer. Power does come at a price. Therefore, the higher the power rating of the charge controller, the more it will cost.

Environmental concerns and placement.


Solar charge controllers are usually mounted inside the passenger compartment of the RV and recessed in a wall cavity. While this installation looks good, it can sometimes be problematic if larger than 30amp rating.  Heat must be dissipated otherwise the charge controller will fail. We would never suggest locating the charge controller in the battery compartment. There are many reasons for this, the biggest of which are corrosion caused by battery off-gassing and the potential for fire should there be a spark.

Solar Charge Controller Price

Blue Sky Energy, Solar Boost 3000I, MPPT RV Charge Controller, 30 Amp, 12 Volt, SB3000I

Blue Sky Energy, Solar Boost 3000I, MPPT RV Charge Controller, 30 Amp, 12 Volt, SB3000I

$289.00  Buy

Blue Sky Energy, Sun Charger 30, PWM 30 Amp, 12 Volt Charge Controller

Blue Sky Energy, Sun Charger 30, PWM 30 Amp, 12 Volt Charge Controller

$175.00  Buy

Go Power! 10 AMP FLUSH-MOUNTED DIGITAL SOLAR CONTROLLER

Go Power! 10 AMP FLUSH-MOUNTED DIGITAL SOLAR CONTROLLER

$100.00  Buy

Go Power! 40 AMP MPPT SOLAR CONTROLLER WITH REMOTE

Go Power! 40 AMP MPPT SOLAR CONTROLLER WITH REMOTE

$515.00  Buy

Go Power! Digital Remote Meter for GP-MPPT-40

Go Power! Digital Remote Meter for GP-MPPT-40

$70.00  Buy

MorningStar SunSaver Duo SSD-25RM, with Remote Display RV Charge Controller 25 Amp, 12 Volt

MorningStar SunSaver Duo SSD-25RM, with Remote Display RV Charge Controller 25 Amp, 12 Volt

$188.00
$150.00  Buy

Zamp Solar 10-Amp All Weather - Digital Display - 5-Stage Smart Controller ZS-10AW

Zamp Solar 10-Amp All Weather – Digital Display – 5-Stage Smart Controller ZS-10AW

$149.00
$103.00  Buy

Zamp Solar 8-Amp Smart Controller - 5-Stage All Weather - *Not Lithium Ready  ZS-8AW

Zamp Solar 8-Amp Smart Controller – 5-Stage All Weather – *Not Lithium Ready ZS-8AW

$95.00
$49.99  Buy

Zamp Solar Digital LCD indoor wired remote display battery monitor ZS-RT1

Zamp Solar Digital LCD indoor wired remote display battery monitor ZS-RT1

$98.00  Buy

HOW TO BUY SOLAR PANELS

https://apis.google.com/u/0/se/0/_/+1/fastbutton?usegapi=1&size=small&annotation=inline&psa_not_processed=&origin=https%3A%2F%2Fwww.altestore.com&url=https%3A%2F%2Fwww.altestore.com%2Fhowto%2Fhow-to-buy-solar-panels-a103%2F&gsrc=3p&ic=1&jsh=m%3B%2F_%2Fscs%2Fapps-static%2F_%2Fjs%2Fk%3Doz.gapi.en.86MLdKEg0Ug.O%2Fam%3DwQE%2Fd%3D1%2Fct%3Dzgms%2Frs%3DAGLTcCNVMDBrJcVLxr_OXSrhwhVXLtLCsQ%2Fm%3D__features__#_methods=onPlusOne%2C_ready%2C_close%2C_open%2C_resizeMe%2C_renderstart%2Concircled%2Cdrefresh%2Cerefresh&id=I0_1612517206792&_gfid=I0_1612517206792&parent=https%3A%2F%2Fwww.altestore.com&pfname=&rpctoken=35442051
How to Buy Solar Panels

Are you thinking about buying a solar panel system but don’t know where to start? You came to the right place!SEI PV Design ManualA Really Great Read

Before we dive in to the specifics of solar panels (a.k.a. PV modules, solar electric panels), let us remind you that energy efficiency and conservation are the best ways to reduce your energy foot print and your electrical bill (see our Energy Efficiency and Your Home article). Please actively explore and incorporate all avenues of efficiency before pursuing a home solar panel system. That being said, solar power is an exciting clean-energy option that is becoming more and more popular. Solar electricity is a fascinating topic. To really feed your curiosity, we highly recommend the book PHOTOVOLTAICS: DESIGN & INSTALL MANUAL.

What shapes, sizes and types do solar panels come in?

Solar panels vary in length and width and are often about 2 inches thick. They are generally about 30 pounds or less, but the larger solar panels can be cumbersome to carry onto the roof. We carry a wide selection of solar panels for home use: framed, foldable, and rollable.

  • Framed solar panels are the industry standards. They are the most cost effective and applicable for most home solar panels applications.
  • Foldable solar panels are lightweight (less than 5 pounds) and can fold up and fit easily in a backpack.
  • Flexible (or rollable) solar panels are also lightweight but bulkier than the foldable panels. Many people use these rollable solar panels on boats because they are durable and can be easily stowed after use.

Generally thin-film laminate type of solar panels (foldable & flexible) are more expensive per watt and require more square footage to produce the same wattage of an equally sized framed module.

What size solar panels do I need for my home and how many?

The number of solar panels you will need depends primarily upon the amount of electricity you are trying to produce and the insolation in your area. Solar insolation can be thought of as the number of hours in the day that the solar panel will produce its rated output. This is not equivalent to the number of daylight hours. Read more about insolation in our How To section and get an idea of the insolation in your area: Solar Insolation Map – USA.

You’ll find solar panels in a variety of wattages. Watts are the main measure of a solar panel, along with nominal voltage. For a rough idea of how many watts of solar panels you will need for your home, start by dividing your electrical usage (in watt-hours per day) by the solar insolation in your area. Bump that number up by 30-50% (to cover system inefficiencies) and you’ll have an idea of the number of watts of solar panels total you will need. If that number is more than 1000 watts, you are talking about $4K to $8K or more for the solar electric system. (Could we take this opportunity to mention the importance of energy efficiency again?!) If you could still use a little help with the math, please give us a call and tell us how much electricity you are trying to produce (in kwh/month or watt-hours/ day) and your location, and we’ll help get you started.

What types of solar panels are there?

Most solar panels can be classified as monocrystalline, polycrystalline or amorphous. This is based on the silicon structure that comprises the cell. It’s not quite as complicated as it sounds. Basically a 100 watt monocrystalline solar panel should have the same output as a 100 watt polycrystalline solar panel and a 100 watt amorphous solar panel. The main difference is the amount of area which the solar panel occupies. Because the monocrystalline structure is more efficient than amorphous (and only very slighlty more so than polycrystalline) in turning sunlight into electricity, the amorphous solar panel of the same wattage will be physically larger. By the way, when talking about efficiency of solar panels, keep in mind that solar panel efficiency is still only about 13-18% efficient in turning sunlight into electricity. Often amorphous solar panels are less expensive than the crystalline panels. If space is not an issue, then an amorphous panel could be a great option. Additionally, amorphous solar panels perform better than crystalline solar panels in very hot temperatures and are also slightly more tolerant of partial shading.

Solar Energy for Home Heating & Cooling

Please keep in mind that solar panels produce electricity, and should not be used to produce electricity for heating or cooling sources. If heating is your main issue, be sure to check out Solar Air Heaters and Solar Water Heaters. Solar air heating and solar water heating are examples of solar thermal technologies which produce heat, but not electricity (and are much more cost effective than solar panels). While solar electric panels are not an economically feasible choice to power your air conditioning, a solar panel can power an attic fan that can help reduce the amount of time you use your AC.

Locating your Panels – Very Important!

A key factor in the effective use of solar electricity is proper placement of the solar panels. Make sure to locate the panels where they will receive full sunlight between the hours of 10 am and 3 pm. Be sure that the solar panels will not be shaded by shadows from tree branches, chimneys, other structures, etc. Once again – NO SHADE! You will be mounting the solar panels on the roof, the ground or a pole. For more information on the proper placement solar electric panels, please checkout the How To for Solar Panel Mounting article.

How Long will Solar Panels Last?

Solar panels use the sun’s light to generate electricity. They generate electricity during sunny daylight hours and can be used in a system with batteries so that the electricity can be used at other times as well. Also known as Photovoltaic (PV) modules, solar panels are the main component of a solar electric system. Along with an inverter, mounting system, batteries and Solar Charge Controllers, solar panels can produce electricity to power the energy efficient appliances and lights and appliances in most households. Solar panels themselves generally last over 25 years, and require little maintenance. Many of the first solar panels produced in the 50s are still in use today. Many of the solar panels have a 20 year warranty or more. A common warranty states that the panels will produce at least 80% of their rated power after 20 years.

What else will I Need with a Solar Panel?

In addition to the solar panel mounting hardware, there are additional components that you will need for a safe installation. If you plan on using just one solar panel in a battery based system (an off-grid system), you will need a solar charge controller and overcurrent protection to protect each major component of your system: solar panels, solar charge controller, deep cycle batteries, and inverter. If you plan on using more solar panels in your system, you will also need to safely wire the photovoltaic solar panels together and to the charge controller. An easy and safe way to do this is by using MC (multi contact) connectors. These connectors connect to the cables coming from the solar panel and can be cut in half to expose bare wire. Combiner & pass-through boxes are used to collect the bare ends of the wire from multiple solar panels; then from the combiner box you can run just one set of wires to the solar charge controller. For each series string of solar panels, you will need an appropriate sized breaker.

That’s a lot of components to figure out! If after reading all this you are a little confused but even more excited about solar energy, what’s next? Well, you can read more about solar panel systems. Also, our AltE U offers in-person workshops in Massachusetts and Ohio, as well as free education online videos. If you are considering installing your own solar electric system or installing PV (photovoltaic panels) as a business, be sure to check out our series of three classes beginning with our Basic Photovoltaic and Site Assessment class.

TIPS FOR BUYING YOUR SOLAR POWER SYSTEM.

Buying a home solar power system can be a very exciting experience, but don’t get too carried away by advertising. Be sure to focus on the important aspects of your purchase as it’s a substantial investment and one you’ll be living with for a long time. The following are some buying solar tips on what to look for when purchasing a system.

Buying solar tips: Solar quotes online

Recommendations

Ask friends, family neighbours or colleagues who have had solar PV systems installed. Often the best buying solar tips com from right in your neighbourhood. They’ll be able to tell you about their experiences and perhaps alert you to any problems they experienced. Problems that you’ll be able to avoid. Learn more about potential issues in our consumers guide to solar power – avoiding tricks and traps.

Length of manufacturer’s warranty

Take note of what guarantees the manufacturer offers. If the manufacturer is reputable and the warranty period on the panels is substantial (at least 25 years) you would naturally expect your solar system to last long for a long time, long enough to pay for itself and make you a profit. However, for a warranty to be honoured, the manufacturer needs to be still operating. So, be cautious of brands without a track record in Australia.

Have realistic price expectations

If you are paying substantially less than many other similar size systems quoted, you may find poor quality equipment and/or poor installation work. Quality equipment and installation isn’t cheap and, like all other purchases, you often get what you pay for.

Compare components and warranty periods and check into the company providing the installation. While large, well established companies can pass on substantial savings due to increased buying power, other companies often reduce costs by cutting important corners.

Solar panel certifications

This applies to all solar panel purchases, but especially to the purchases that could attract a government rebate. The certification on solar panels indicates the type of testing that they have undergone. For instance, TUV IEC 61215 confirms that the solar panels have gone through testing by an independent laboratory and have met their advertised specifications. Other certification types are often self-assessed. Therefore, they rely on the company being honest in what it claims.

Decide on the type of panels

It used to be the case that if you had limited roof space you would need highly efficient (and very expensive) mono-crystalline solar panels. This is rapidly changing with advances in polycrystalline panel technology and some thin film technologies. Still, even if you have ample roof space you may still want to consider panel sizes vs. output. Filling up your roof with inefficient panels will affect your ability to add more panels at a later date, and does not maximise the power output of the space.

It’s also important to bear in mind that regardless of claim, no solar panel technology will produce a significant amount of power in full shade. Learn more about monocrystalline vs. thin film panels.

Solar panel mounting

Make sure that the roof, ground mounting or tracking system is engineer certified for the area you are in. For example, if you live in a cyclone prone area make sure the mounting system  and mounting brackets are also cyclone rated. Quality systems are wind certified. After all you do not want your system to take off during a wild storm . The mounting system is a very vital component and some suppliers skimp on this item. Make sure you ask about wind certification, warranty arrangements and get copies of relevant documents.

Solar inverter efficiency

A power inverter is the box between the panels and your appliances that converts DC electricity from solar panels to AC suitable for use in your home.

Not all solar inverters are equal and inverter efficiency will have a direct impact on the amount of time it takes for a system to pay for itself. Look at the inverter efficiency before purchasing a system. Obviously, the more efficient the inverter the better. Less electricity will be wasted as heat during the conversion from DC to AC. Industry leading solar inverters for grid connect systems in Australia include SMA, Sungrow and Fronius. Be cautious of  generic type brands.

Get a few solar quotes

It always wise to gather a few solar quotes when making a major purchase as you will find that prices vary widely between providers. But don’t be just swayed by price as inferior components can reduce the up-front cost of the system. However, they may wind up costing you more in the long run in terms of reliability and efficiency.

Buy solar power at discount prices

Avoid high pressure sales people

High pressure sales tactics are unfortunately common in the solar industry. Try not to make decisions on the spot, just ask the person to let you consider the offer. If it’s as good as they claim, it will still be a good deal tomorrow. Pressured decisions on the spot often turn out to be less advantageous in reflection.

High pressure sales people are only one of the pitfalls that may await you when you shop for a solar power system. Learn more about the potential issues and how to avoid them in our consumers guide to solar power – avoiding tricks and traps.

One of the best buying solar tips is to make sure to use an accredited solar power system installer, certified by the Clean Energy Council.

Leave a Comment